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1 Introduction

Ant Colony Optimization (short: ACO) algorithms for the heuristic solution of combinato-
rial optimization problems enjoy a rapidly growing popularity (see, e.g., the survey article by
Dorigo, Di Caro and Gambardella [4]). Formulating the approach explicitly as a metaheuristic,
the so—called ACO metaheuristic, Dorigo and Di Caro [5] have emphasized its broad range of
applicability. The starting point for ACO algorithms is a biological metaphor: Natural ant
colonies are able to find shortest paths between ant—hill and food by a specific type of re-
inforcement learning, using local pheromone trails for information exchange. In [6] and [3],
Dorigo, Maniezzo and Colorni have transferred this principle to the algorithmic solution of op-
timization problems. In the last decade, it has been recognized that not only routing problems
as the famous traveling salesperson problem (TSP), but also any other type of combinatorial
optimization problems can be encoded as “best path” problems and solved using the ant colony
metaphor.

Intuitively, the basic idea of ACO is the following: In order to solve a best—path problem
in a graph, random walks of a fixed number of “ants” through the graph are simulated. The
transition probabilities of each ant are governed by two types of parameters assigned to the
edges of the graph: (i) pheromone values representing, in some sense, the “common memory”
of the ant colony (the “past” perspective), and (ii) visibility values computed by heuristic pre—
evaluations of how promising a transition along each edge appears (the “future” perspective).
The pheromone values are updated by a combination of two mechanisms: evaporation, a global
reduction of the pheromone vectors by a certain factor per time unit simulating the process
that in a natural environment, pheromone trails diminish in course of time, and reinforcement
of pheromone on paths recognized as “good”.

Although much experimental and empirical research has already been done on ACO algo-
rithms, only few algorithmic variants of the ant metaheuristic have been subject to a theoretical
convergence analysis. The two basic existing attempts in this direction are the following:

1. In [9] and [10], an ACO variant called GBAS (Graph—based Ant System) is analyzed.
The main result is that the current solutions of GBAS tend, with a probability > 1 —e, to



the optimal solution of the given optimization problem. It is shown that ¢ can be made
arbitrarily small by a suitable choice of either the number S of ants or of the so—called
evaporation factor p. However, no bounds on S or p ensuring an € of a particular size
are presented, so the convergence remains “uncontrollable” in a certain sense: The user
cannot be given a convergence guarantee with a pre—specified minimum probability, even
if he/she is willing to adjust the parameters S and p of his/her system.

2. In a recent paper [14], Stiitzle and Dorigo analyze another ACO algorithm, a variant of
the MAX-MIN Ant System developed by Stiitzle and Hoos [16]. They show that for
this variant, the objective function value of the best solution found so far converges with
probability one to the optimal objective function value. Nevertheless, the demonstrated
convergence property is relatively weak, being also shared by Random Search. For the
current solutions, Stiitzle and Dorigo show a lower bound for their limiting probability of
being optimal, but by construction of the algorithm, the gap of this lower bound to unity
cannot be completely closed.

The aim of the present paper is to overcome the limitations of both approaches. For the
first time, a convergence property of the strength of that proved by Hajek [11] for Simulated
Annealing is shown within the context of ACO: We are able to demonstrate for a particular
ACO algorithm that its current solutions converge to an optimal solution with probability
exactly one. More specifically, we show that by using suitable parameter schemes, it can be
guaranteed that the optimal paths get attractors of the stochastic dynamic process realized
by the algorithm. The ACO algorithm for which we are able to provide such a guarantee is
a time—dependent modification of GBAS. It uses two alternative types of pheromone update.
Depending on which of these two types is chosen, we call the GBAS modification:

1. GBAS/tdev (GBAS with time-dependent evaporation factor), resp.
2. GBAS/tdlb (GBAS with time-dependent lower pheromone bound).

Let us emphasize that GBAS/tdev and GBAS/tdlb are not problem-specific algorithms, but
full metaheuristics, such that they can be applied in the overall range of (static) combinatorial
optimization.

2 The Algorithm

As it is done in [14], we formulate the investigated algorithm without reference to wisibility
(attractiveness, desirability) values ny; (for an explanation of this notion, the reader is referred
to [4], [5] or [9]). The two variants GBAS/tdev and GBAS/tdlb of the algorithm differ by the

used pheromone update rules.

Definition 2.1. Let an instance of a combinatorial optimization problem be given. By a
construction graph for this instance, we understand a directed graph C = (V, A) together with
a function ® with the following properties:

(1) In C, a unique node is marked as the so—called start node.

(2) Let W be the set of (directed) paths w in C satisfying the following conditions:
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(i) w starts at the start node of C;
(ii) w contains each node of C at most once;

(iii) the last node on w has no successor node in C that is not already contained in w
(i.e., w cannot be prolonged without violating (ii)).

Then ® maps a subset W of the set W onto the set of feasible solutions of the given
problem instance. In other words: To each path w in W, there corresponds (via ®) a
feasible solution, and to each feasible solution, there corresponds (via ®!) at least one
path in W.

Based on Definition 2.1, the algorithm is the following:

Initialize pheromone trails 74, on the arcs (k,[) of the construction graph C;
for iteration n =1,2,... {
for ant s=1,...,5 {
set k, the current position of the ant, equal to the start node of C;
set u, the current path of the ant, equal to the empty list;
while (a feasible continuation (k,[) of the path u of the ant exists) {
select successor node [ with probability py;, where
pr = 0, if continuation (k, 1) is infeasible, and
Prt = Tht / (X (k,r) Tkr), Where the sum is over all feasible (k,r), otherwise;
continue the current path u of the ant to node [ by adding arc (k,[) and setting k := [;

}
}

do pheromone update;

}

Therein, feasibility of a continuation (k,[) of a current (partial) path u is defined by prop-
erty (2) of Definition 2.1: The complete path must be an element of W, so the continuation
u + (k,[) obtained by concatenating u with arc (k,[) must be such that a path w € W with
prefix u + (k,1) exists. The objective function value assigned to a complete path w is always
that of ®(w), i.e., of the corresponding feasible solution.

Remark 1. Disregarding wvisibility helps to increase transparence of presentation and is not an
essential restriction: The proofs can be extended to the case of non—constant visibility values
along the same lines as in [9] or [10]. — In the algorithm, the nice idea by Stiitzle and Dorigo
in [14] is borrowed to always reinforce the first found instead of the last found of equally good
paths. Also this feature is not restrictive: If the user prefers an implementation where the last
(the currently found) best solution is reinforced, our convergence proof can be extended to this
case by using the arguments in [10].

Remark 2. Definition 2.1 is the definition of the construction graph from [9] in a slightly
generalized form. The generalization concerns the restriction of feasible paths to a subset W,
which could be achieved in [9] by other means, namely via the visibility values.'

!Theoretically, W can be any subset of W (our results remain valid in this general case). For practical
implementations, however, it is important to decide quickly whether a path w € W with prefix u + (k, 1) exists,
so the choice of YV needs to be restricted to subsets where the decision on the membership of a path with given
prefix is computationally easy.



Remark 3. In [9], it is shown that each static combinatorial optimization problem can be
encoded as a problem of finding the best feasible path in a suitable construction graph. The
simplest example is a TSP with n nodes, where the construction graph is a complete graph of
order n, and to each feasible path, there corresponds a tour of the TSP in a straightforward way.
For other problem types, other graph types can be used, and specific constraints on feasible
paths can be represented by a restriction of W to some appropriate W. For some problem
encodings, an artificial start node has to be introduced; often, also an artificial termination
node (a sink of the graph) needs to be introduced in order to satisfy (iii) in property (2) of
Definition 2.1.

Now let us specify the two algorithmic variants by describing their respective pheromone
update rules. In both variants, the pheromone initialization is done by 7 = 734(1) = 1/| A
for all arcs (k,) of C, where |A| is the number of arcs of C. The common principle of the two
pheromone update rules is that a certain share p (or p,) of pheromone “evaporates” on all arcs,
which is compensated afterwards by placing pheromone as a “reward” on the arcs of the best
found path. We say then that this path has been reinforced in the current iteration.

Pheromone update for GBAS/tdev:

1 —pn) Ti(n) 4+ pp / L(w(n)), if (k,1) € w(n),
Ta(n +1) = { El — pn; mgn;, ) otglervgfise, " (1)
where 0 < p, <1 (n=1,2,...). Therein, w(n) is the best path found until the end of iteration
n, which is stored in a specific (list) variable and replaced each time some ant finds a path with
lower cost (objective function) value. L(w) is the length, i.e., the number of arcs, of path w.
The essential feature of this GBAS variant is that the evaporation factor p, is chosen as
time—dependent: its value is a function of the iteration index n. As in (ordinary) GBAS (see
[9]), the pheromone trails are normalized in such a way that their sum is always unity. The
reward p, / L(w(n)) in (1) is the particular increment achieving just this normalization.

Pheromone update for GBAS/tdlb:

a1 { X ) 0 O ), D )
max ((1 — p) 7i(n), Tmin(n)), otherwise,

where 0 < p < 1, and (7nin(n)) is a sequence of real numbers. The remaining notation is
as before. Now, the evaporation factor is constant (time-independent), but the pheromone
trails are bounded below in a time—dependent way, i.e., by a function of the iteration index n.
Contrary to GBAS/tdev, where the sum of pheromone trails is always unity, it may vary in
GBAS/tdlb. Defining a lower pheromone bound is a basic idea of the so-called MAX-MIN Ant
System developed by Stiitzle [13] and investigated in much detail by Stiitzle and Hoos [15], [16].
Already in these articles, the possibility of dynamically changing this bound is considered.

3 Description by Stochastic Processes

For the derivation of stochastic convergence properties, it is necessary to put the algorithmic
variants of section 2 into an unambiguous probabilistic framework by assigning well-defined
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stochastic processes to them. This can be done by considering certain current state variables
connected with the execution. For our results, it is sufficient to concentrate on

e the vector 7(n) of pheromone values on the arcs of C at the beginning of iteration n, and

e the best found path @w(n — 1) at the beginning of iteration n, i.e., at the end of iteration
n — 1. (w(0) can be defined as an arbitrary fixed path.)

7(n) is a vector with |.A| components. w(n — 1) can be represented as a sequence of at most
|V| node indices, |V| being the number of nodes. Since there are only finitely many of such
sequences which may be arranged in, say, lexicographic order, w(n — 1) can also be identified
by a single integer index. Then, (z(n), w(n — 1)) is an element of IR x IN. Note that for a
deterministic sequence of such elements (i.e., a particular realization of the stochastic process),
the ordinary mathematical convergence notion applies.

The following Lemma classifies the described stochastic process as a Markov process (see,

e.g., [8]:

Lemma 3.1. Both for GBAS/tdev and GBAS/tdlb, the stochastic process with states
X, = (z(n), w(n—-1)) (n=1,2,...)

is an inhomogeneous Markov process in discrete time. (For inhomogeneous Markov processes,
see, e.g., [12].)

Proof. We have to show the Markov property that the distribution of X, only depends on
X,,_1. Observe that the distribution of the paths w*)(n—1) of the ants s = 1,...,.S in iteration
n — 1 only depends on 7(n — 1). Furthermore, these paths, together with @w(n — 2), determine
w(n — 1), and together with w(n — 1), they determine 7(n) by the pheromone update rules.
Hence the distribution of (7(n), w(n — 1)) is completely determined by (z(n — 1), w(n — 2)).
The Markov process is inhomogeneous since the pheromone update depends on n. O

As the proof of the Lemma shows, the transition function of the Markov process follows, for
each of the two algorithmic variants, in a straightforward way from the description in section
2. Thus, the stochastic processes to which our results in the next section refer are well-defined.
Let us remark that the process (r(n)), without the second component, is not a Markov process
and cannot be defined in a self-contained way.

4 Results

Theorem 4.1. Let, in the algorithm GBAS/tdev,

B logn
log(n + 1)

(n = N) (3)

pn <1

for some N > 1, and

i%zm. (4)



Then, with probability one, the states X,, = (z(n), w(n — 1)) of the assigned Markov process
converge as n — oo to one of the states (z[w*], w*) where w* is an optimal path, and r[w*] is
defined by

1/L(w*), if(k,1) € w
0, otherwise.

nlu) - { ©

In particular, if (3) and (4) are satisfied, there exists with probability one an optimal path w*
such that for a fixed ant s, its probability P,-(n) of traversing path w* in iteration n tends to
unity, as n — oo.

Proof.
(a) By Fy,, we denote the event that iteration n is the first iteration in which an optimal path
is traversed by some ant. Consider a fixed optimal path w*. We have

-Fy A—Fy A ... = w"is never traversed,
and hence (with P denoting the probability measure on the Markov process)

P(=Fy AN—=Fy A ...) < P(w" is never traversed)

o0
= J] P(w* not traversed in iteration n | w* not traversed in an iteration i < n). (6)

n=1
Now, for each fixed arc (k,l), the following lower bound on its pheromone trail at the end
of iteration n can be derived: In the worst case, (k,[) has always only lost pheromone by
evaporation and never obtained a reinforcement. W.l.o.g., let N > 2. Then, for n > N, by (3)

T -] [T s | )

P} v log(i + 1)

=1

Nl log N const
LH:I< . >] () e = (7

Since there are less than |V| nodes available as feasible successors of a fixed node, and since all
pheromone trails are less or equal 1, it follows that

const

pri(n) > (n > N).

— V|-logn

Hence, the probability of a fixed ant s to traverse w* in iteration n (n > N) is

const Lw)
H pkl o .

(D) e V| - logn

Obviously, the lower bound on the r.h.s. is independent on what has happened before iteration
n, such that the estimation also holds conditionally on arbitrary events in iteration 1,...,n—1.
Therefore, an upper bound for the r.h.s. of (6) is

1. ﬁ 1 const Lw) (8)
iyt V| - logn '



Taking the logarithm of this product, we obtain

i": 1 ] ( const )L(w*) < i ( const )L(w*) B

oy ¢ o8 V| - logn - 2 VY] logn o

since 3, (logn)~" is a diverging series for each positive integer L. (Note that (logn)” < const-n
for n sufficiently large.) As a consequence, the product (8) and therefore also the r.h.s. of (6)
is zero, which proves that the event F; V F, V ... that in some iteration an optimal path is
traversed has probability one.

After the iteration where, for the first time, an optimal path has been traversed, w(n) is set
equal to this path. So we can re—formulate the observation above as follows: With probability
one, the stochastic process X,, = (z(n),w(n — 1)) enters in some iteration into one of the
sets S|4 x {w*}, where w* is (the index of) an optimal path, and S, = {(z1,...,7,) | z; >
0, P, x; = 1} is the p-dimensional simplex.

(b) We show now that for each w* taken from the set of optimal paths, the state (z[w*], w*)
with 7[w*] given by (5) is a deterministic attractor of the Markov process (X,,) with attraction
domain Sy 4 x {w*}: If the realization X, (w), Xo(w), ... of the Markov process satisfies X, (w) €
Sj4) x {w*} for some n, then lim,_,o Xy (w) = (z[w*], w*). Together with part (a) of the proof,
this obviously verifies the first assertion of the theorem.

Let m denote the index of the iteration where w* is traversed for the first time, such that
the process (z(n), w(n — 1)) enters into the set Sj4 x {w*} in iteration m + 1. Then, in all
iterations n > m, only path w* is reinforced, and w(n) = w*. Using the upper row of the
update rule (1), it can easily be verified by induction that for (k,1) € w* and r =1,2,.. .,

ralm 1) = rh (1—pn>] ra(m) + meﬂ 00 ©

n=m j=i+1

(Therein, the convention [T;c;a; =1 for J = () is used.) Due to (4), the series 3 p,, diverges,
ie., II72, (1 — pn) = 0. Therefore, in (9),

m—+r—1 00
lim l 11 (1—Pn)] T(m) = mu(m) [[ (1 —pn) = 0, (10)

which shall be needed further below.
Now consider an arc (k,l) ¢ w*. After iteration m, it is never reinforced, so

Tr(m+r) = lmﬁ (l—pn)] Tr(m) — 0 (r — 00) (11)

n=m

as in (10). Hence also the sum of the pheromone trails on arcs ¢ w* tends to zero, and so by
the normalization property, the sum of the pheromone trails on arcs € w* must tend to unity.
By (9) and (10), however, limsup, . 7k (m + r) has the same value for each (k,l) € w* (the
second term on the r.h.s. of (9) does not depend on (k,[)), and the sum of these values is 1.
The same holds for liminf,_,,, 7;(m + r). Therefore, for (k1) € w

limsup7y(m +r) = liminfry(m+r) = lim 7y(m+r) = 1/ L(w"). (12)

r—00



Together with the trivial convergence limw* = w* of the second component of X,,, this yields
lim,, o0 X, = (7[w*], w*).

(c) In particular, if the process has entered a set Sy 4 x {w*}, it follows immediately from the
limits (11) and (12) of the pheromone trails and the definition of the transition probability py,
that py(n) — 1 for (k,1) € w*. Taking the product over all (k,[) € w* yields convergence of
P,+«(n) to unity. Since an optimal path w* satisfying the condition above exists with probability
one, the second assertion of the theorem follows. O

Remark. For a formally correct interpretation of the second assertion of Theorem 4.1 it should
be observed that the probability P,-(n) of a traversal of w* is a function of the pheromone trails
Tk(n). In our Markov process framework, these trails are components of the states and hence
random variables, so also the values P,«(n) (n = 1,2,...) form, for each fixed w*, a sequence
of random variables. For a fixed realization of the process, Py«(n) (n =1,2,...) is a sequence
of real numbers which may or may not converge. By letting w* run through all optimal paths,
we get (in general) several sequences of this type. The theorem states that the case where one
of these sequences tends to unity occurs with probability one.

The following corollary indicates concrete schemes for choosing the evaporation factors in
accordance with Theorem 4.1:

Corollary. Let, in the algorithm GBAS/tdev,

J— Cn 1 i
pn_m (n=1)  with0 < lim ¢, <1.

Then the assertions of Theorem 4.1 hold.
Proof. We show that the conditions (3) and (4) are satisfied for such schemes. As n — oo,

logn log (1 + %) 1
log(n+1)  log(n+1) nlog(n+1)’

where a,, ~ b, (n — o0) means a, /b, — 1 (n — o0).
Thus, if ¢, — ¢ €]0, 1],
Cn logn

- <1l -—==
n log(n + 1) log(n + 1)
for sufficiently large n, which shows (3). On the other hand,

i >/Oo—dx = o0
— logn+1) — L wloglx+1) 7

and hence also (with a sufficiently large N)

> Cn > c/2

2 2

___m > e
= nlog(n+1) = = nlog(n+1)

diverges, which shows (4). O



Theorem 4.2. Let, in the algorithm GBAS/tdlb,
Cn

_ >1

log(n + 1) (nz1)

with lim,,_,, ¢, > 0. Then the assertions of Theorem 4.1 hold.

Tmin (n) =

Proof. The proofis an analogue to that of Theorem 4.1. Let us only go into the points that are
different. In part (a) of the proof of Theorem 4.1, a worst—case estimation for the pheromone
trail on a never reinforced arc (k,[) has been performed. In the context of GBAS/tdlb, we can
use the lower bound 7,,;,(n) for that purpose and obtain

Cn S c
log(n+1) — 2 log(n+1)

for sufficiently large n, where ¢ = lim,, ., ¢,. This is essentially the same lower bound as in
(7), and the subsequent arguments can be carried over in an analogous way. As to part (b), we
must be aware that 7(n) is now not restricted anymore to the simplex S, 4/, since the pheromone
trails are not normalized to sum = 1. In particular, the fact that pheromone vanishes on arcs
(k,1) ¢ w* does not imply anymore that the sum of pheromone trails on arcs (k,[) € w* tends
to unity. However, by a slight extension of the arguments, it is possible to show that if the set
R x {w*} is entered by the process (X,,), where w* is an optimal path, one has, as before,
lim, o X, = (z]w*],w*) with z[w*] given by (5). This can be seen as follows: Let again m
denote the index of the iteration where w* is traversed for the first time. A lower bound on
e (n) for (k,1) € w* is obtained by neglecting the possibility that 7 (n + 1) is set equal to
Tmin(n). In this way, we obtain, setting p, = p in (9), that

(1_przl %z_:

As a consequence, T (m + r) > 1/(2L) for sufficiently large r. On the other hand, since
Tmin(n) — 0 (n — 00), we have 7, (m + r) < 1/(2L) for sufficiently large r, such that the
update type of setting 7;(n + 1) equal to Tn,(n) is not applied anymore for large r values.
Hence, for r large enough, the “greater equal” in (13) is to be replaced by “equal”, which means
that for (k,1) € w*, we have lim, o 74y(m + r) = 1/L. For (k,l) ¢ w*, it is easily seen that
lim,_, o Tk (m + 1) = 0, because Tin(n) — 0 (n — 00). The remainder of the proof, including
part (c), is analogous to that of Theorem 4.1. O

T(n) > Tmin(n) =

|
—

r

(r — o00) (13)

h_l -

Tkl(m+7") Z (1—p)’"rkl(m) +

N~
I
o

Remark. We admit that at present, we are not able to give clues how to choose the parameter
schemes in Theorems 4.1 and 4.2 to speed up convergence in a best—possible way. Within the
range where the given conditions are satisfied, the algorithm keeps a suitable balance between
the two contradicting aims of exploring the search space and favoring good solutions. We could
outline “extreme” schemes within the indicated range that emphasize either the first or the
second aim, but it is very difficult to determine the optimal point of this range in a theoretical
analysis.

5 Conclusion

By the presented theorems, the results of [9], [10] and [14] have been sharpened for a specific
ACO algorithm to the strength of the well-known convergence property of the Simulated An-
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nealing metaheuristic. As in Simulated Annealing (cf. [1]), it turns out that a convergence
guarantee can be obtained by a suitable speed of “cooling” (i.e., reduction of the influence of
randomness): The geometric pheromone decrement on not reinforced arcs effected by constant
evaporation factor is too fast and leads (in general) to premature convergence to suboptimal
solutions. On the other hand, introducing a fixed lower pheromone bound stops cooling at
some point and leads to random-search—like behavior without convergence. In between lies a
compromise of allowing pheromone trails to tend to zero, but slower than geometrically. This
can be achieved either by decreasing evaporation factors, or else by “slowly” decreasing lower
pheromone bounds. In a certain window of the cooling speed, we get convergence to the optimal
solution with probability one.

We do not affirm that the theoretical cooling speeds indicated by Theorems 4.1 — 4.2 are
also the most efficient ones, where efficiency is measured by the average runtime required to
find a solution of a sufficiently good quality (say, only p% worse than the best solution with
some pre—defined p). In the typical area of application for ACO, the area of NP—complete
combinatorial optimization problems, we cannot expect to obtain an algorithm providing op-
timal solutions in a short computation time. Again as in Simulated Annealing, it might turn
out that faster cooling than indicated by the theoretical scheme is advantageous for finite-time
(i.e., real) computing: For getting quick convergence, it may be worthwhile to pay the price
of convergence to suboptimal solutions. However, experimental studies with slightly decreasing
evaporation factors or lower pheromone bounds falling slightly slower than geometrically might
be interesting, especially for applications where the user is willing to invest a high amount of
computation time for obtaining excellent solution quality. In addition to the (so—called “elitist”)
pheromone update mechanisms investigated here (and in [14]), we also suggest computational
experiments with decreasing evaporation factors and/or decreasing lower pheromone bounds
for other empirically successful update mechanisms, such as the rank-based update rule intro-
duced by Bullheimer, Hartl and Strauss [2]. It would not be a surprise if some moderate form
of retarding the cooling process could, in a considerable number of cases, be able to further
improve the performance of present ACO implementations.

Future theoretical research should deal with the speed of convergence, and address the
question of the expected running time until the optimum is reached. Some interesting results
concerning the last—mentioned question have recently been found for the field of Evolutionary
Algorithms (see [7]). Also the Ant Colony Optimization approach might be accessible to such
investigations.
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