
A Graph–based Ant System and its Convergence

Walter J. Gutjahr
Department of Statistics, Operations Research and Computer Science

University of Vienna

Abstract: A general framework for solving combinatorial optimization problems heuristically by
the Ant System approach is developed. The framework is based on the concept of a construction
graph, a graph assigned to an instance of the optimization problem under consideration, encoding
feasible solutions by walks. It is shown that under certain conditions, the solutions generated
in each iteration of this Graph–based Ant System converge with a probability that can be made
arbitrarily close to one to the optimal solution of the given problem instance.

Keywords: Heuristic, ant system, ant colony optimization, combinatorial optimization, Markov
process.

1 Introduction

It is well–known that many optimization problems arising in computer science, engineering,
management, administration or other fields cannot be solved exactly within reasonable time
limits, at least not for problem instance sizes of practical interest. For this reason, heuristics
have been invented to find high quality solutions for these problems in reasonable time.
Some of them are not restricted to specific problem types, but may be applied, with suitable
modifications, to a broad class of optimization problems. Often, these “general–purpose”
algorithms are called metaheuristics; prominent examples are Simulated Annealing (SA)
(see, e.g., [1]), Genetic Algorithms (GA) (see, e.g., [16, 18]), or Tabu Search (TS) (see, e.g.,
[12]). Also some traditional and well–established heuristic optimization techniques such as
Random Search (RS), Local Search (LS) (see, e.g., [19], ch. 19), or the class of Greedy
Heuristics (GH) (see, e.g., [19], section 12.3) may be considered as metaheuristics.

In a rough classification, we may distinguish between iterative heuristics, which start
with a complete feasible solution and change this solution in an iterative process in order
to improve the objective function value, and constructive heuristics, where a solution is
generated “from scratch” by successive additions of certain elements or components, with
or without backtracking (that is, removal of components that have been added at an earlier
step). A typical representative of iterative heuristics is LS, where the changes of the current
solution (which is always complete and feasible) follow a so–called neighborhood structure; a
typical representative of constructive heuristics is GH, where the final solution is successively
built up in a linear process without backtracking, governed by the “gains” of the components
that are allowed to be added at a certain step.

1

In a second classification, we may distinguish between single–run heuristic procedures,
where the algorithm stops as soon as a certain internal termination condition is satisfied
(e.g., having reached a local optimum in the case of LS, or having finished the construc-
tion process in the case of GH), and repetitive heuristic procedures, where the user may
control the amount of computation time he/she wants to invest, and where the quality of
the solution improves as a function of the invested computation time. The second type of
heuristics, which usually exploits randomness, includes heuristics such as GA or SA. Single–
run heuristic procedures are typically fast, but often provide only moderate solution quality,
whereas repetitive heuristic procedures may reach considerable solution quality at the price
of (sometimes) very large runtime.

Combining both classifications, we get four possible combinations. Surprisingly, most
metaheuristics fall into only three of these four combinations:

1. iterative, single–run (e.g., LS),

2. constructive, single–run (e.g., GH),

3. iterative, repetitive (e.g., SA or GA).

(A possible exception is Greedy Randomized Adaptive Search [10], which is a repetitive
heuristic with constructive features. However, since it uses LS as an essential part, it should
rather be considered as a hybrid between an iterative and a constructive heuristic.)

Considering that Greedy Heuristics are available for most practical optimization prob-
lems and often produce good results, it seems, in these cases, less expensive with regard to
development costs to further improve their solution quality by extending them to repetitive
procedures than to replace them by iterative heuristics which follow completely different opti-
mization strategies. So it seems desirable to have a constructive and repetitive metaheuristic
including GH as a special (boundary) case.

An essential step in this direction was the development of Ant System (AS) by Dorigo,
Colorni, and Maniezzo (see [8, 4, 9]), a new type of heuristic inspired by analogies to the
foraging behavior of real ant colonies, which has proven to work successfully in a series of
experimental studies. Diverse modifications of AS have been applied to many different types
of discrete optimization problems and have produced very satisfactory results (for a survey,
see [5]). Recently, the approach has been extended by Dorigo and Di Caro to a full discrete
optimization metaheuristic [6], called the Ant Colony Optimization (ACO) metaheuristic.

The aim of the present article is to show the theoretical soundness of the ant–based
optimization approach by deriving a convergence result: under certain conditions, the current
solution of the system converges, with a probability that can be made arbitrarily close to
one, to the optimal solution. As a formal framework for our investigation, we introduce an
ant–based metaheuristic, called Graph–based Ant System, which is somewhat more specific
than the ACO metaheuristic, but suffices for covering the entire range of static combinatorial
optimization problems.

The remainder of the paper is structured as follows: Section 2 gives a short introduction
into the key ideas of ant–based optimization. In Section 3, our extended version of AS is
presented. Section 4 presents the mathematical convergence result, and Section 5 contains
final considerations and references to possible future work.

2

2 The Basic Ideas of Ant–Based Optimization

Before we start to describe Graph–based Ant System in formal terms, it may be helpful
to provide the reader with an intuition of how ant algorithms work. For this purpose, it
is convenient to trace ant–based optimization back to its roots and give a short outline of
the historically first ant algorithm, Ant System, for the solution of the traveling salesman
problem [8, 4]. We follow the presentation in [6].

Ant algorithms are multi–agent systems inspired by the behavior of colonies of real ants
which has been studied by biologists. It is known that ant colonies are able to solve shortest–
path problems in their natural environment by relying on a rather simple biological mecha-
nism: each ant leaves information on which path it has traversed by depositing a chemical
substance, called pheromone, on the ground. Ants have a tendency to follow these pheromone
trails. Within a fixed period, shorter paths between nest and food can be traversed more
often than longer paths, and so they obtain a higher amount of pheromone, which, in turn,
tempts a larger number of ants to choose them and thereby to reinforce them again.

The (artificial) Ant System for solving the Traveling Salesman Problem, that is the
problem of finding a shortest closed tour visiting each node of a given graph with given
edge lengths exactly once, is based on very similar principles: first, the agents — as the
“artificial ants” may be called — are positioned at some node of the graph. Then, each
agent performs a series of random moves to neighbor nodes, controlled by suitably defined
transition probabilities. As soon as an agent has visited all nodes, the length of the agent’s
tour is evaluated, and the “pheromone” values assigned to the arcs of his path are increased
by an amount proportional to the quality of the tour. This procedure is repeated many times.
As a counter–effect to the accumulation of pheromone, an “evaporation” mechanism reduces
periodically the pheromone values by some given factor. The probability of a transition
along a specific arc is computed from two parameters: (a) the pheromone value assigned to
this arc, and (b) the length of the arc. The higher the pheromone value and the smaller the
length, the higher is the probability that the agent follows this arc in his next move.

The success of the approach in solving the Traveling Salesman Problem has stimulated
its transfer to a large number of other combinatorial optimization problems. For some of
them, e.g., the quadratic assignment problem (see [17]), the feasible solutions have a similar
structure (being representable as permutations) as those of the Traveling Salesman Problem,
such that they can easily be interpreted as results of walks in a directed graph. The idea of
AS may be adapted in these cases without essential changes. Nevertheless, in order to be
able to treat arbitrary combinatorial optimization problems, the graph in which the agents
perform their walks must be given a more general, abstract interpretation, and the transition
mechanism must also be generalized. In the following section, we develop a formal framework
for this purpose.

3 The Algorithm

Our extension of Ant System is based on the representation of a feasible solution as a walk
in a directed graph, which we call the “construction graph”:

3

Definition 3.1. Let an instance of a combinatorial optimization problem be given. By a
construction graph for this instance we understand a directed graph C = (V ,A) together
with a function Φ with the following properties:

(1) In C, a unique node is marked as the so–called start node.

(2) Let W be the set of (directed) walks w in C satisfying the following conditions:

(i) w starts at the start node of C.

(ii) w contains each node of C at most once.

(iii) The last node on w has no successor node in C that is not already contained in
w (that is, w cannot be prolonged without violating (ii)).

Then Φ maps the set W onto the set of feasible solutions of the given problem instance.
In other words: To each walk w satisfying (i) – (iii), there corresponds (via Φ) a feasible
solution, and to each feasible solution, there corresponds (via Φ−1) at least one walk
satisfying (i) – (iii).

As it can be seen from this definition, a construction graph (C, Φ) specifies a particular
encoding of the feasible solutions as “walks”. The objective function value of the walk is set
equal to the objective function value of the corresponding feasible solution of the original
problem. We assume throughout this paper that the optimization problem under considera-
tion is formulated as a minimization problem, that is, the objective function represents costs.
Usually, of course, there are several ways to design a construction graph for a given problem,
and the choice of the construction graph may have great impact on the performance of the
algorithm (cf. the discussion in Section 5).

Remark 3.1. For some applications, it is more convenient to extend Definition 3.1 by
admitting the case that not all walks in the construction graph satisfying (i) – (iii) correspond
(via Φ) to feasible solutions. Then, Φ is a function mapping only a subset of W onto the set
of feasible solutions. Our formalism does not really change in this case, except that the cost
value of a walk corresponding to an infeasible solution is set equal to infinity (or to a value
larger than any cost of a feasible solution). Permitting such walks during the execution of the
algorithm, however, would reduce the efficiency, so they should be “locked” by an operation
described in component 5 below.

Remark 3.2. Using the extension of Definition 3.1 described in Remark 3.1, it is always
possible to design a construction graph for the given problem instance with a number of
nodes linear in the number of bits needed for the representation of a solution, and a number
of arcs quadratic in this number of bits: see the procedure outlined in Remark 3.3 below.
Sometimes, however, larger construction graphs will produce a better solution quality.

Let us now describe Graph–based Ant System as an extension of Ant System ([8, 4, 9]).
Graph–based Ant System contains the following components:

1. A construction graph (C, Φ) according to Definition 3.1.

4

2. A set A1, . . . , AS of agents (in the literature usually called “ants”). Each agent performs
a random walk with carefully chosen transition probabilities (see component 3 below)
on the construction graph. In a multiprocessor system, the walk of each agent may be
computed on a separate processor (cf. [3]). In a single–processor system, the moves of
A1, . . . , AS are computed sequentially. A time period in which each agent performs a
walk (consisting of several single moves) through the construction graph will be called
a cycle. An application of Ant System consists of several cycles 1, . . . , M ; the number
M of cycles may be fixed in advance or be determined at a later time during the
execution of the algorithm.

3. Transition probabilities for the random moves of the agents during each cycle. Let
u = (u0, . . . , ut−1) denote the partial walk an agent has already traversed before its tth
transition step in a fixed cycle m, where u0, . . . , ut−1 are node indices in the construction
graph (u0 referring to the start node). We write l ∈ u if node l is contained in the partial
walk u, and l /∈ u otherwise. Moreover, let A be the set of arcs in the construction
graph. Then the general form of the transition probabilities is

pkl(m,u) =
[τkl(m)]α · [ηkl(u)]β∑

r/∈u,(k,r)∈A [τkr(m)]α · [ηkr(u)]β
, (1)

if l /∈ u and (k, l) ∈ A, and
pkl(m,u) = 0 (2)

otherwise. Therein, pkl(m,u) denotes the probability that a fixed agent having already
traversed a partial walk u = (u0, . . . , ut−2, ut−1 = k) in the current cycle m, moves
from node k (its current position) to node l. (Note that this probability is only defined
if k = ut−1.) The numbers τkl(m) are called “pheromone values” (see component
4 below), and the numbers ηkl(u) are called “desirability values” (see component 5
below). α and β are parameters.

At the beginning of each cycle, each agent is positioned at the start node of the
construction graph. In the tth transition step of the current cycle, each agent As

performs a single random move in the construction graph, controlled by the transition
probabilities pkl(m,u), where u is the partial walk As has already traversed (that is,
each agent has a particular u). If, for a fixed agent As, pkl(m,u) = 0 holds for all
nodes l before the tth transition step, then agent As has completed his walk in the
current cycle m. According to Definition 3.1, this walk determines a solution of the
given optimization problem.

4. An array of pheromone values τkl, where τkl is assigned to arc (k, l) in the construction
graph. The pheromone values usually change from cycle to cycle (see below), so their
dependence on the cycle index m can be represented in the form τkl(m). At the
beginning of cycle 1, we set τkl = 1/(number of arcs) for each arc (k, l). At the end
of each cycle m (m = 1, 2, . . . , M − 1), the following update rule is applied. First,

for each agent As and each arc (k, l), a value ∆τ
(s)
kl is determined as a function of the

5

solution assigned to the walk of As in the current cycle m. Suppose this solution has
a cost value (objective function value) fs. We set for each arc (k, l):

∆τ
(s)
kl =

{
ϕ(fs), if agent As has traversed arc (k, l),
0, otherwise.

(3)

Therein, ϕ is a nonincreasing function which may depend on the walks of the agents
in the cycles 1, . . . , m− 1. Let

C =
∑

(k,l)∈A

S∑

s=1

∆τ
(s)
kl . (4)

Now, if C = 0, we set
τkl(m + 1) = τkl(m)

for all arcs (k, l), that is, the values τkl are the same in cycle m + 1 as in cycle m. If,
on the other hand, C > 0, we set

τkl(m + 1) = (1− ρ)τkl(m) + ρ∆τkl, (5)

where

∆τkl =
1

C

S∑

s=1

∆τ
(s)
kl . (6)

The number ρ is usually called the evaporation factor (see [9]). It is easily verified from
(5), (6) and (4) that the sum of pheromone values,

∑
(k,l)∈A τkl(m), always remains equal

to one. (Forcing the sum of the values τkl(m) to be one is not done in other ant–based
algorithms, and it is not essential for our convergence result below. It serves simply as
a re–normalization which favors the numerical stability of the algorithm.)

The pheromone update rule above may be interpreted as follows: If no walk is rewarded,
everything remains constant. Otherwise, due to evaporation, only an amount of 1− ρ
of pheromone remains on the graph after cycle m. The remaining amount of ρ is the
“budget” for rewarding the walks traversed in cycle m according to their respective
objective function values. Each agent As can be imagined to report by which “bonus”
∆τ

(s)
kl he wants to reward his walk in cycle m. The actual pheromone increments result

by distributing the total budget of ρ proportionally to the reported values ∆τ
(s)
kl .

By the described update rule, the pheromone on “successful” arcs of the construction
graph is increased, such that they are traversed more often by the agents in the future.
By setting ρ = 0, the influence of the cost function on the walks of the agents is
switched off. If, in addition, the influence of the desirability values ηkl(u) is switched
off by setting β = 0, then we obtain pure Random Search, which, in this way, turns
out to be a special case of Graph–based Ant System.

5. An array of desirability values ηkl, where ηkl is assigned to arc (k, l) in the construction
graph. The desirability values may depend on the partial walk u = (u0, . . . , ut−2, ut−1 =
k) the current agent has already traversed, that is, on the whole “history”, so they

6

can be written as ηkl = ηkl(u). Typically, the value ηkl(u) is obtained from a Greedy
Heuristic for the combinatorial optimization problem under consideration; in this view,
it may also be interpreted as the value of a so–called greedy function (see [10]): Assume
that a GH is given. It specifies the stepwise construction of a “good” (but in general
not optimal) solution of the problem. In our formalism, this construction can be
represented by a walk on the construction graph. The GH defines “weights” for all
feasible arcs (k, l) leaving node k, and determines the next node l of the walk by
the “greedy principle” that the weight of (k, l) is maximum. We may now consider
the weight of arc (k, l) as the “desirability” of the transition from node k to node
l, that is, we may set ηkl(u) = weight (k, l). Alternatively, another way of defining
the desirability values may also be chosen: Set ηkl(u) = 1, if weight(k, l) is maximum
among all successor nodes of node k, and ηkl(u) = 0 otherwise.

The values ηkl(u) can also be used for preventing walks corresponding to infeasible
solutions, if the extended version of Definition 3.1 according to Remark 3.1 is used: If
w is such a walk, let u be the longest partial walk (starting at the start node) on w
that can still be prolonged to a feasible walk (i.e, that did not contradict a feasibility
condition so far), and let (k, l) be the first arc on w not belonging to u. Then w can
be “locked” (without locking any feasible walk) by setting ηkl(u) = 0.

In our formalism presented above, Ant Systems are natural stochastic generalizations of
Greedy Heuristics: Note that if the parameter α is set equal to zero, and the alternative
way described above of defining the desirability values is chosen, the behavior of the
agents is exclusively governed by the greedy principle, so GH is another special case of
Graph–based Ant System.

Remark 3.3. It should be obvious that Graph–based Ant System is applicable to all
combinatorial optimization problems with a finite solution space per problem instance: the
construction graph could simply consist of a start node, a termination node, a specific node
vx for each feasible solution x, and arcs from the start node to each vx and from each vx to
the termination node. Of course, this implementation would be highly inefficient. A more
efficient alternative is the following:

(a) Encode each feasible solution by a binary string of fixed length (as it is done in the
classical GA approach);

(b) design a construction graph with (i) a start node, (ii) a termination node, (iii) a
completely interconnected subgraph, containing a node for each possible bit position
(the visited nodes are then the 1–bits), (iv) arcs leading from the start node to each
other node, and (v) arcs leading from each other node to the termination node;

(c) exclude infeasible binary strings by locking the corresponding walks via the process
described in component 5 above.

In continuous optimization and sometimes also in dynamic optimization, the solution space
is not finite anymore. Such problems are not within the area of application of Graph–based
Ant System.

7

Remark 3.4. Recently, Dorigo and Di Caro [6] have developed the concept of the ACO
metaheuristic, which allows the treatment of a very broad range of optimization problems by
an ant–based approach. The variety of features incorporated into this metaheuristic makes it
extremely flexible in application, and it is just because of this flexibility and generality why
theoretical results such as the one proven here are hard to obtain for the ACO metaheuristic
in total. Graph–based Ant System described above is more specific and hence less powerful,
but in designing it, we have been very careful not to be too restrictive as far as the range of
possible applications is concerned. A compromise between descriptive power and theoretical
tractability had to be found. Let us mention some features of the ACO metaheuristic (ACO–
MH) lacking in Graph–based Ant System (GAS), and shortly outline why we omitted these
features in our framework:

1. Contrary to ACO–MH, time–dependent evaluation of the costs assigned to a walk, as
it is convenient for some dynamic optimization problems (e.g., the routing problem),
is not supported by GAS. In GAS, we have decided to restrict ourselves to static
combinatorial optimization.

2. ACO–MH allows the formulation of explicit constraints for walks to be feasible. Since
the same effect can also be obtained by the “locking”–construction described in com-
ponent 5 of GAS, we have dispensed with this option.

3. In ACO–MH, agents can (a) start their walks not only at a certain start node, but
at arbitrary nodes, and (b) terminate them triggered by arbitrary conditions. The
more specific assumptions of GAS can be circumvented (a) by adding a unique dummy
start node, and (b) by adding a dummy termination node and forcing conditional
termination via the values ηkl(u).

4. ACO–MH allows an (optional) step–by–step pheromone update, which is not supported
by GAS, since global update is more usual in ant–based approaches.

5. Also with regard to the delayed pheromone update, as it is supported both by ACO–
MH and GAS, the ACO–MH version is more flexible: different arcs belonging to the
current walk may obtain different pheromone increments. However, as remarked in [6]
(footnote 8), most ACO implementations do not exploit this possibility, so it seemed
dispensable.

6. So–called daemon actions (centralized actions not assigned to specific agents) are not
supported by GAS. We had to omit this feature because it enables hybrids between
ant–based and other optimization techniques, whereas the aim of this article is to
investigate the capabilities of a pure ant–based strategy.

7. The scheduling of activities is more flexible in ACO–MH than in GAS. Let us empha-
size, however, that also GAS does not restrict the scheduling of the walks of the agents
within a cycle: both serial and parallel (or even mixed) execution is allowed.

8

4 Convergence

In this section it will be shown that under some conditions, the current solutions of Graph–
based Ant System (the feasible solutions corresponding to the walks of agents A1, . . . , AS in
cycle m) converge with a probability that can be made arbitrarily close to one to the optimal
solution. The conditions are the following:

(a) The parameter α in Equation (1) is chosen as α = 1.

(b) There is only one optimal walk in W , that is, the optimal solution is unique, and it is
encoded by only one walk in W .

(c) Along the optimal walk w∗, the desirability values satisfy ηkl(u) > 0 for all arcs (k, l)
of w∗ and the corresponding partial walks u of w∗.

(d) Let f ∗ = f ∗(m) be the lowest cost value observed in the cycles 1, . . . ,m−1, that is, the
lowest objective function value fs corresponding to a walk of an agent As in these m−1
cycles. (It is easy to store and update the current value of f ∗ during the execution of
the algorithm.) In the case of cycle m = 1, let f ∗ = ∞. Let the function ϕ chosen for

the definition of the values ∆τ
(s)
kl at the beginning of cycle m + 1 (see eq. (3)) have the

following properties:

(i) ϕ(fs) > 0 for fs ≤ f ∗,

(ii) ϕ(fs) = 0 for fs > f ∗.

In other words: Only walks that are at least as good as the best found walk up to now
get a positive increment ∆

(s)
kl . For positive cost functions, e.g., ϕ(fs) may be chosen as

ϕ(fs) = 1/fs if fs ≤ f ∗ and ϕ(fs) = 0 otherwise. Note that ϕ is allowed to depend on
the “history” (the cycles 1, . . . , m− 1), and hence in particular on the value f ∗.

Let us briefly discuss the conditions (a) – (d). Condition (a) has merely technical reasons;
it allows an easier treatment of the “normalization factor” in the denominator at the right
hand side of Equation (1). It does not imply an essential restriction, since the main purpose
of the parameters α and β is not to “shape” pheromone values and desirability values (this
could be done by other means), but to have easy control on their impact relative to each
other; so we may fix one of these two parameters as long as the other remains free.

Condition (b) is more restrictive, but we have preliminary results indicating that it can
be dropped. Because of their mathematical complexity, we must defer this topic to a later
publication [15].

Condition (c) may appear nasty, because it seems to require the knowledge of the optimal
walk. In practice, however, this condition makes no problems at all; it can easily be satisfied
by arbitrarily slight changes of the desirability values: for each feasible continuation (k, l)
of a partial walk u with ηkl(u) = 0, replace ηkl(u) = 0 by ηkl(u) = δ with a small δ > 0.
Let us remark that as long as global optimization is intended, it makes sense anyway not to
exclude any feasible continuation of a partial walk a priori. — Although not very restrictive,
condition (c) is essential because otherwise it may happen that a specific arc belonging to

9

the optimal walk is inaccessible for the agents, just because of an unlucky choice of the
desirability values.

Condition (d), finally, is a version of what is called elitist strategy in prior publications
on Ant System (see [9]): Only the best walks are rewarded; walks that are dominated by
another already traversed walk do not get pheromone increments anymore. The first ant–
based systems where only the best tour found so far is rewarded by pheromone increments,
were Ant-Q [13] by Gambardella and Dorigo (they call this update strategy “Global–best”)
and ACS [7] by the same authors. Whether a combination with a “non–elitist” pheromone
update strategy, as it has been used in diverse experimental studies, destroys the theoretical
convergence property or not, is another open problem.

Our main result is the following:

Theorem 4.1. Let conditions (a) – (d) be satisfied, and let Pm denote the probability that
a fixed agent, say agent A1, traverses the optimal walk in cycle m. Then the following two
assertions are valid:

1. For each ε > 0 and for fixed parameters ρ and β, it can be achieved by the choice of a
sufficiently large number S of agents that Pm ≥ 1 − ε holds for all m ≥ m0 (with an
integer m0 depending on ε).

2. For each ε > 0 and for fixed parameters S and β, it can be achieved by the choice of
an evaporation factor ρ sufficiently close to zero that Pm ≥ 1− ε holds for all m ≥ m0

(with an integer m0 depending on ε).

Let us briefly outline the plan of the proof:

• First (Proposition 4.1), we show that the search procedure of Graph–based Ant Sys-
tem can be understood as a Markov process, that is, a stochastic process where the
probability distribution of the state at cycle m only depends on the state at time
m−1. Usually, a probabilistic algorithm admits different valid descriptions in terms of
a stochastic process (cf. Remark 4.2 below); by establishing the Markov process inter-
pretation, we fix the mathematical framework for the notions introduced in the proof
and give them an unambiguous meaning from the viewpoint of probability theory.

• Next, a lower bound for the probability that at least one agent traverses the optimal
walk in a fixed cycle m is derived (Lemma 4.1). Closer inspection shows (Corollary)
that the obtained lower bound, although depending on m, holds independently of the
“history” of the process (the events in the previous cycles).

• Then, it is shown that, provided that the optimal walk is traversed at least once by
some agent at some time, the pheromone values assigned to the arcs of the optimal
walk get closer and closer to 1/(length of the optimal walk), whereas the pheromone
values assigned to other arcs tend to zero (Lemma 4.2).

• Again under the condition that the optimal walk is traversed at least once, the last–
mentioned phenomenon has the consequence that the computed transition probability

10

values responsible for the traversal of the arcs of the optimal walk get closer and closer
to unity (Lemma 4.3 and Corollary).

• Still under the mentioned condition, it follows that the probability for the event that
a fixed agent traverses the optimal walk gets closer and closer to unity during the
execution of the algorithm (Lemma 4.4).

• Finally, the entire theorem is proven by combining the last observation with an esti-
mation of the probability that no agent will ever traverse the optimal walk: using the
lower bound of Lemma 4.1, it turns out that this probability can be made arbitrarily
small either by increasing the number of agents or by decreasing the evaporation factor.

It may be useful to indicate where our convergence conditions (a) – (d) enter into the
proof: Condition (a) is applied merely as a simplification of the pheromone update rule in the
proof of Lemma 4.1. By condition (b), the proof can be reduced to an investigation of what
happens on the unique optimal walk. Condition (c) enables the lower bound estimation of
Lemma 4.1. Condition (d), finally, is used to avoid premature convergence to a suboptimal
solution.

It should be mentioned that our proof also works in the special case β = 0, that is, the
case where the values ηkl(u) are not used at all (cf. Remark 4.3 below). The case ρ = 0, on
the other hand, must be excluded: for Lemma 4.1, ρ > 0 is required. So our result does not
cover Random Search.

As announced, we start by interpreting the iterative solution process of Graph–based
Ant System as a Markov process (see, e.g., [11]) in discrete time. The states of this Markov
process are the triples

(τ(m), w(m), f ∗(m)) (m = 1, 2, . . .),

where

• τ(m) is the vector of the pheromone values τkl(m) for all arcs (k, l) during cycle m,

• w(m) is the vector of the walks w(s)(m) (s = 1, . . . , S) of the agents A1, . . . , AS in cycle
m,

• f ∗(m) is the best found cost value corresponding to the walk of any agent in cycle
1, . . . , m − 1 (that is, the value f ∗ controlling the update of the pheromone values at
the end of cycle m according to condition (d) at the beginning of this section). For
cycle m = 1, we set f ∗(1) = ∞.

Proposition 4.1. The state variables (τ(m), w(m), f ∗(m)) (m = 1, 2, . . .) form a Markov
process.

Proof. The Markov property is satisfied if the distribution of the state in cycle m,
(τ(m), w(m), f ∗(m)), only depends on the state in cycle m−1, (τ(m−1), w(m−1), f ∗(m−1)).
This is indeed the case, since the state transitions are given as follows:

11

• τ(m) results deterministically from τ(m − 1), w(m − 1) and f ∗(m − 1) according to
the update rule for the pheromone values.

• The probability distribution of w(m) only depends on τ(m) (the values ηkl(u) are
deterministic!) and is hence determined by (τ(m− 1), w(m− 1), f ∗(m− 1)).

• f ∗(m) results deterministically from w(m− 1) and f ∗(m− 1).

2

Remark 4.1. The reader should notice that in the given Markov process interpretation, the
numbers pkl(m,u) defined by (1) are functions of τ(m) and therefore also functions of the
state of the process in cycle m−1. In particular, the numbers pkl(m,u) are random variables.
From this point of view, their interpretation as probabilities is only an indirect one: by the
state transition rule of the considered Markov process, they determine the distribution of
the vector w(m) of the walks in cycle m.

Remark 4.2. We could describe the search process also by a non–Markovian stochastic
process, e.g., by capturing the current state by the triple (τ(m), w(m), fopt(m)) instead of
(τ(m), w(m), f ∗(m)), where fopt(m) denotes the best found cost value in cycle m. Our choice,
however, facilitates the formulation of the proof. For example, in the proof of Lemma 4.4
below, only the state in cycle m′− 1 has to be considered instead of the whole history of the
process.

In the sequel, the following abbreviations shall be used:

• w∗ denotes the (unique) optimal walk.

• L denotes the length (number of arcs) of w∗.

• Pr is written for the probability measure on the Markov process defined above.

• E(s)
m denotes the event that w(s)(m) = w∗, that is, the event that agent As traverses in

cycle m the optimal walk.

• Bm is an abbreviation for ¬E(1)
m ∧ . . .∧¬E(S)

m , that is, for the event that w(s)(m) 6= w∗

for all s = 1, . . . , S (the event that no agent traverses the optimal walk in cycle m).

• Fm is an abbreviation for B1∧ . . .∧Bm−1∧¬Bm, that is, for the event that the optimal
walk is traversed by some agent in cycle m, but by no agent in the cycles 1, . . . , m− 1.
Obviously, the events F1, F2, . . . are mutually exclusive.

• A is an abbreviation for F1 ∨ F2 ∨ . . ., that is, for the event that there is an m and an
s such that w(s)(m) = w∗ (the event that the optimal walk is traversed by some agent
in some cycle).

Furthermore, the notation (k, l) ∈ w shall be used for the assertion that arc (k, l) lies on the
walk w, and a walk w shall sometimes also be denoted by the sequence of nodes lying on it.

12

Because of condition (c) at the beginning of this section and the fact that there are only
finitely many arcs (k, l) and only finitely many feasible partial walks u, we have

γ = min {[ηkl(u)]β | (k, l) ∈ w∗, u partial walk of w∗} > 0 (7)

and
Γ = max [ηkl(u)]β < ∞.

(Note that if there were infinitely many arcs or walks, the minimum resp. maximum could be
undefined, and the infimum resp. supremum could be 0 resp. ∞.) Multiplying all desirability
values ηkl(u) by a fixed constant does not change the transition probabilities (1). So it can
be assumed without loss of generality that the values ηkl(u) are normalized in such a way
that Γ = 1, that is,

[ηkl(u)]β ≤ 1 (8)

for all arcs (k, l) and all partial walks u.

Lemma 4.1. The probability Pr(¬Bm) that at least one agent traverses the optimal walk
in cycle m is larger or equal to 1−(1−cm−1p)S, where c = (1−ρ)L and p = γL ∏

(k,l)∈w∗ τkl(1)
with γ defined by (7).

Proof. Since ∆τkl ≥ 0 and ρ > 0, eq. (5) implies

τkl(m + 1) ≥ (1− ρ) τkl(m) (9)

in the case C > 0, and again because of ρ > 0, this holds also in the case C = 0. Repeated
application of (9) yields

τkl(m) ≥ (1− ρ)m−1 τkl(1). (10)

Because of (8) and
∑

(k,l) τkl(m) = 1,

∑

r/∈u,(k,r)∈A
τkr(m) · [ηkr(u)]β ≤ ∑

r/∈u,(k,r)∈A
τkr(m) ≤ 1.

Therefore, the transition probabilities pkl(m,u) given by (1) satisfy, for a node l with l /∈ u,
the inequality

pkl(m,u) =
τkl(m) [ηkl(u)]β∑

r/∈u,(k,r)∈A τkr(m) [ηkr(u)]β
≥ τkl(m) [ηkl(u)]β. (11)

Let w∗ = (v0, . . . , vL). Then by (11), (7), and (10),

Pr(E(s)
m) =

L−1∏

i=0

pvivi+1
(m, (v0, . . . , vi)) ≥

L−1∏

i=0

τvivi+1
(m) [ηvivi+1

]β ≥ γL
L−1∏

i=0

τvivi+1
(m)

≥ γL
L−1∏

i=0

(1− ρ)m−1 τvivi+1
(1) = γL (1− ρ)L(m−1)

∏

(k,l)∈w∗
τkl(1) = cm−1p.

13

Since the walks of the S agents are independent, this implies

Pr(Bm) ≤ (1− cm−1p)S,

whence the assertion follows. 2

Corollary. Also the conditional probability Pr(¬Bm |B1 ∧ . . . ∧ Bm−1) that at least one
agent traverses in cycle m the optimal walk, given that no agent has traversed the optimal
walk in one of the previous cycles, is larger or equal to 1− (1− cm−1p)S.

Proof. The proof is a repetition of the proof of Lemma 4.1. Inequality (9) and therefore also
inequality (10) hold in any case, independently of what happens in the cycles 0, . . . , m− 1,
and therefore also independently of the condition B1 ∧ . . . ∧Bm−1.

2

In the following lemmas, assertions on conditional probabilities, conditional on the event
Fm, shall be made. We denote these conditional probabilities in the usual way by writing
Pr{. . . |Fm}.
Lemma 4.2. For each ε > 0 and each m ∈ IN there is an integer d(ε, m) ∈ IN such that

Pr {|τkl(m
′)− 1/L| < ε for all (k, l) ∈ w∗ | Fm} ≥ 1− ε

for all m′ ≥ m + d(ε,m), and

Pr {τkl(m
′) < Lε for all (k, l) /∈ w∗ | Fm} ≥ 1− ε

for all m′ ≥ m + d(ε,m).

Proof. We restrict ourselves to the event Fm, that is, to the event where the optimal walk
w∗ is traversed for the first time in cycle m. Consider a cycle m′ > m. There are two possible
cases:
Case (a): At the end of cycle m′, C = 0. Then τkl(m

′ + 1) = τkl(m
′) for all arcs (k, l).

Case (b): At the end of cycle m′, C > 0. This is only possible if ∆τ
(s)
kl > 0 for some agent As

in cycle m′. In view of (3) and condition (d) at the beginning of this section, this means that
some agent As has traversed a walk with corresponding cost of at most f ∗(m′). Because of
m′ > m, f ∗(m′) is already the minimal cost value f ∗ (the cost value corresponding to w∗).
So case (b) implies that at least one agent As has traversed w∗ in cycle m′. Without loss of
generality, assume that just the agents As for s = 1, . . . , S ′ (1 ≤ S ′ ≤ S) have traversed w∗

in cycle m′. Then for an arc (k, l) /∈ w∗, ∆τ
(s)
kl = 0 and hence also ∆τkl = 0 is set at the end

of this cycle, whereas for an arc (k, l) ∈ w∗,

∆τ
(s)
kl = ϕ(f ∗) (s ≤ S ′)

and
∆τ

(s)
kl = 0 (s > S ′).

14

We obtain

C =
∑

(k′,l′)∈A

S′∑

s=1

∆τ
(s)
k′l′ =

∑

(k′,l′)∈w∗
S ′ · ϕ(f ∗) = L · S ′ · ϕ(f ∗).

Hence for (k, l) ∈ w∗,

∆τkl =
1

C

S′∑

s=1

∆τ
(s)
kl =

S ′ · ϕ(f ∗)
L · S ′ · ϕ(f ∗)

=
1

L
, (12)

and therefore
τkl(m

′ + 1) = (1− ρ) τkl(m
′) + ρ/L (13)

or
τkl(m

′ + 1)− τkl(m
′) = ρ (1/L− τkl(m

′)). (14)

In particular: If τkl(m
′) < 1/L, then τkl(m

′ + 1) > τkl(m
′). If, on the other hand, τkl(m

′) ≥
1/L, then (because of (13)) τkl(m

′ + 1) ≥ 1/L. In other words: in case (b), τkl(m
′) (for

(k, l) ∈ w∗) either increases, or it stays above 1/L.
Now combine case (a) and case (b). We obtain the assertion that for (k, l) ∈ w∗ and

m′ > m,
τkl(m

′) ≥ min (τkl(m + 1), 1/L) ≥ αkl(m) > 0,

where αkl(m) is defined as (1− ρ)m τkl(1).
Let now (k, l) ∈ w∗, and let u = (u0, . . . , ut−1 = k) be the partial walk from the start

node to node k on w∗. By (11) and (7),

pkl(m
′, u) ≥ γ τkl(m

′) ≥ γ αkl(m).

So, for a fixed agent As and m′ > m,

Pr(E
(s)
m′ |Fm) ≥ ∏

(k,l)∈w∗
γ αkl(m) = γL

∏

(k,l)∈w∗
αkl(m) = a(m) > 0,

the number a(m) being independent of m′.
By the same argument as in the proof of the Corollary to Lemma 4.1, it follows that the

estimation above holds irrespectively of what has happened in cycle m+1,m+2, . . . , m′−1,
that is, it is also valid if the considered probability is additionally conditioned on any possible
event in any of these cycles. Straightforward considerations show then that the probability
(conditional on Fm) that no agent traverses w∗ in g fixed subsequent cycles after cycle m is
smaller or equal to (1− a(m))S·g. By choosing g large enough, this probability can be made
arbitrarily small. As an immediate consequence, the probability (conditional on Fm) that
case (b) above occurs less than h times between cycle m and cycle m+d (that is, that event
¬Bm′ occurs for less than h indices m′ between m and m + d) can be made arbitrarily small
by choosing d large enough: Choose, for 0 < δ < 1/2, the number g(δ) such that

Pr { no agent traverses w∗ in g(δ) fixed successive cycles with indices ≥ m | Fm} ≤ δ.

Now, for any 0 < ε < 1, set δ = ε/(2h) < 1/2. The probability (conditional on Fm) that
case (b) occurs at least once in each of h successive periods, each period consisting of g(δ)

15

successive cycles, is then larger than (1− δ)h ≥ 1− 2δh = 1− ε. So at least with probability
1− ε (conditional on Fm), case (b) occurs at least h times in these d = g(δ) · h cycles.

Now choose h = h(ε) in such a way that (1− ρ)h < ε, and d = d(ε,m) in such a way that

Pr { case (b) occurs less than h times between cycle m and cycle m + d | Fm } < ε.

Consider an index m′ for which case (b) holds. Then by (13),

τkl(m
′ + 1)− 1

L
= (1− ρ)

(
τkl(m

′)− 1

L

)

for (k, l) ∈ w∗, that is, for such an arc, the distance between τkl(m
′) and 1/L decreases each

time when case (b) occurs by the factor 1 − ρ (and remains constant each time when case
(a) occurs). By repeated application, we obtain that with a probability (conditional on Fm)
larger or equal to 1− ε,

∣∣∣∣τkl(m + d)− 1

L

∣∣∣∣ ≤ (1− ρ)h

∣∣∣∣τkl(m)− 1

L

∣∣∣∣ ≤ (1− ρ)h < ε.

Hence with a probability (conditional on Fm) larger or equal to 1− ε, also

∣∣∣∣τkl(m
′)− 1

L

∣∣∣∣ ≤
∣∣∣∣τkl(m + d)− 1

L

∣∣∣∣ < ε

for all (k, l) ∈ w∗ and for arbitrary m′ ≥ m + d, which proves the first part of the lemma.
The second part follows from the equation

∑

(k′,l′)∈A
τk′l′(m

′) = 1 :

According to the first part, the sum of the pheromone values on the optimal walk w∗ is, with
probability (conditional on Fm) of at least 1− ε, larger than

L ·
(

1

L
− ε

)
= 1− Lε

for m′ ≥ m + d(ε,m). So an arc not lying on w∗ cannot have an pheromone value larger
than Lε. 2

Lemma 4.3. Let u∗(k) denote the partial walk on w∗ leading to node k (k ∈ w∗). Then for
each ε > 0 and each m ∈ IN there is an integer d′(ε,m) ∈ IN such that

Pr { pkl(m
′, u∗(k)) ≥ 1− ε for all (k, l) ∈ w∗ | Fm } ≥ 1− ε

for all m′ ≥ m + d′(ε,m).

Proof. By Lemma 4.2, for each m′ ≥ m + d(ε̃, m), with a probability (conditional on Fm)
of at least 1− ε̃, ∣∣∣∣τkl(m

′)− 1

L

∣∣∣∣ ≤ ε̃ for all (k, l) ∈ w∗ (15)

16

and
τkr(m

′) ≤ Lε̃ for all (k, r) /∈ w∗. (16)

Let (k, l) ∈ w∗, and let u = u∗(k). We obtain

pkl(m
′, u) =

τkl(m
′) [ηkl(u)]β∑

r/∈u,r 6=l,r∈A τkr(m′) [ηkr(u)]β + τkl(m′) [ηkl(u)]β
.

Set η = [ηkl(u)]β > γ for abbreviation (η ≤ 1 according to (8)). With ν denoting the
maximal outdegree of a node in C, the eqs. (15) and (16) imply

pkl(m
′, u) ≥ (1/L− ε̃) η

νLε̃ + (1/L + ε̃) η
=

1− Lε̃

1 + ε̃ (νL2/η + L)
.

Since (1 + x)−1 ≥ 1− x for x ≥ 0,

pkl(m
′, u) ≥ (1− Lε̃) (1− ε̃ (νL2/η + L)) ≥ 1− (2L + νL2/η) ε̃ ≥ 1− (2L + νL2/γ) ε̃.

The assertion follows by setting

ε̃ =
ε

2L + νL2/γ
< ε.

2

Corollary. With the notation in Lemma 4.3, let

Ym′ =
∏

(k,l)∈w∗
pkl(m

′, u∗(k)). (17)

Then, for each ε > 0 and each m ∈ IN, there is an integer d′′(ε,m) ∈ IN such that

Pr {Ym′ ≥ 1− ε |Fm } ≥ 1− ε

for all m′ ≥ m + d′′(ε,m).

Proof. Follows immediately from Lemma 4.3: replacing ε by ε/(2L), we obtain that, except
with a probability (conditional on Fm) of at most ε/(2L) ≤ ε, each factor in (17) can be made
larger or equal to 1 − ε/(2L), and since ε/(2L) ≤ 1/2 (note that without loss of generality,
ε ≤ 1), we have (

1− ε

2L

)L

≥ 1− 2 · ε

2L
· L = 1− ε.

2

Lemma 4.4. For each ε > 0 there is an integer d′′′(ε,m) ∈ IN, such that for fixed s,

Pr
(
E

(s)
m′ |Fm

)
≥ 1− ε

for all m′ ≥ m + d′′′(ε,m).

17

Proof. E
(s)
m′ is the event w(s)(m′) = w∗. For a fixed given state in cycle m′ − 1 of the

Markov process, the probability of this event is the value Ym′ as defined by (17). Ym′ itself is
a random variable with a certain distribution (cf. the remark after the proof of Proposition

4.1). So, in order to get the (conditional) probability of E
(s)
m′ without fixing the previous

state, we have still to take the expected value with respect to the distribution of Ym′ . In
particular,

Pr {Ym′ ≥ 1− ε̃ | Fm } ≥ 1− ε̃

for m′ ≥ m + d′′(ε̃, m) by the Corollary to Lemma 4.3. Hence for such an m′,

Pr (E
(s)
m′ |Fm) ≥ Pr {E

(s)
m′ ∧ (Ym′ ≥ 1− ε̃) | Fm }

= Pr {E
(s)
m′ | (Ym′ ≥ 1− ε̃) ∧ Fm } · Pr {Ym′ ≥ 1− ε̃ | Fm } ≥ (1− ε̃) · (1− ε̃) ≥ 1− 2ε̃.

The assertion is obtained by setting ε̃ = ε/2. 2

Now we are able to prove the main result:

Proof of Theorem 4.1. We have

Pm = Pr(E(1)
m) = . . . = Pr(E(S)

m).

Furthermore,

Pr(B1 ∧ . . . ∧Bm) = Pr(B1) · Pr(B2|B1) · . . . · Pr(Bm|B1 ∧ . . . Bm−1),

so by the Corollary to Lemma 4.1,

Pr(B1 ∧ . . . ∧Bm) ≤ (1− p)S(1− cp)S . . . (1− cm−1p)S =

[
m∏

i=1

(1− ci−1p)

]S

.

Set

w(p, c, S) =

[∞∏

i=1

(1− ci−1p)

]S

.

Because the event A can be represented as

A = ¬(B1 ∧B2 ∧ . . .),

one obtains

Pr(A) = 1− lim
m→∞Pr(B1 ∧ . . . ∧Bm) ≥ 1− lim

m→∞

[
m∏

i=1

(1− ci−1p)

]S

= 1− w(p, c, S).

18

On the other hand, w(p, c, S) can be made arbitrarily small1 either by choosing S suffi-
ciently large, or by choosing ρ sufficiently small: because of log x ≤ x− 1 for 0 < x < 1,

log w(p, c, S) = S
∞∑

i=1

log(1− ci−1p) ≤ −S
∞∑

i=1

ci−1p = −Sp
∞∑

i=0

ci = − Sp

1− c
,

that is,

w(p, c, S) ≤ exp
(
− Sp

1− c

)
.

Since 0 < c < 1, the expression on the r.h.s. tends to zero both (for fixed c) as S →∞, and
(for fixed S) as c → 1 (that is, as ρ → 0).

Summarizing, we obtain the fact that it is possible by an appropriate choice of S or of ρ
to achieve that w(p, c, S) ≤ ε/4 and hence Pr(A) ≥ 1− ε/4.

Because of

1 > Pr(A) = Pr(F1 ∨ F2 ∨ . . .) =
∞∑

m=1

Pr(Fm),

the partial sums
∑K

m=1 Pr(Fm) of the series above converge as K →∞, so there is an integer
K = K(ε) such that

∞∑

m=K+1

Pr(Fm) <
ε

4
.

Then,

Pr(F1 ∨ . . . ∨ FK) =
K∑

m=1

Pr(Fm) ≥ Pr(A)− ε

4
≥ 1− ε

2
.

By Lemma 4.4,

Pr(E
(1)
m′ |Fm) ≥ 1− ε

2
(18)

for all m′ ≥ m + d′′′(ε/2,m). Let

d(ε) = max
(
d′′′

(
ε

2
, 1

)
, . . . , d′′′

(
ε

2
, K

))
,

and m0 = m0(ε) = K + d(ε). Then for m ≤ K, eq. (18) holds for all m′ ≥ m0. So for all
m′ ≥ m0:

Pm′ = Pr(E
(1)
m′) = Pr(E

(1)
m′ |F1) · Pr(F1) + . . . + Pr(E

(1)
m′ |FK) · Pr(FK)

+Pr(E
(1)
m′ |¬(F1 ∨ . . . ∨ FK)) · Pr(¬(F1 ∨ . . . ∨ FK))

1The reader might conjecture that since 0 < 1 − ci−1p < 1 for all i, one has w(p, c, S) = 0 anyway.
Unfortunately, this is not the case, as the following counterexample shows: Let c = 1/2, p = 1/2, and S = 1.
Then w(p, c, S) =

∏∞
i=1

(
1− (1/2)i

)
= (1/2) · (3/4) · (7/8) Since

log w(p, c, S) = log
(

1− 1
2

)
+ log

(
1− 1

4

)
+ . . . ≥ −2 · 1

2
− 2 · 1

4
− . . . = −2,

we have w(p, c, S) ≥ e−2 = 0.1353 . . . > 0.

19

≥ Pr(E
(1)
m′ |F1) · Pr(F1) + . . . + Pr(E

(1)
m′ |FK) · Pr(FK)

≥
(
1− ε

2

)
(Pr(F1) + . . . + Pr(FK)) ≥

(
1− ε

2

) (
1− ε

2

)
≥ 1− 2 · ε

2
= 1− ε.

2

Remark 4.3. We do not claim that the theoretical bounds implicit in the proof of our
result are helpful for deriving reasonable choices of the parameters “number of agents”
and “evaporation factor” in practical applications. Assuring convergence to the optimum
with high probability via these bounds would exceed the power of present computers. Our
bounds are far too weak to admit such numerical conclusions. E.g., the attempt to achieve
the requirement Pr(A) ≥ 1− ε by the choice of a sufficiently large number S of agents, using
the inequalities

Pr(A) ≥ 1− w(p, c, S) ≥ 1− exp
(
− Sp

1− c

)

would imply

S ≥ (1− c) (− log ε)

p
,

which is usually a huge value, since p, as defined in Lemma 4.1, is typically extremely small
(e.g., p = 0.0510 for a construction graph with 20 arcs, an optimal walk of length 10, and
γ = 1). Similarly, if S is fixed, the small value of p entails an unrealistically small evaporation
factor ρ.

The reader should notice, however, that these extraordinary small values for p result from
a very coarse estimation of the probability that an agent finds the optimal path. In order
to be quite general, we have based our computation on the worst case that the use of the
desirability values ηkl is not helpful at all, but can instead be even misleading. Nevertheless,
in each reasonable application, these heuristic values will be of great value, such that the
chance that at least one agent finds the optimal path in some cycle is drastically improved.
Moreover, we have used several other rough bounds implying an underestimation of the real
convergence probability by some orders of magnitude. Considering this, convergence to the
optimum with high probability may already be obtained with a moderate number of agents.

Perhaps the bounds can be improved in the future by tighter estimations and suitable
models for the influence of the desirability values. In any case, let us emphasize that it is
not the intention of the present article to give hints for the choice of parameter values in
applications, but rather to demonstrate the capability of the ant–based approach. Especially
in view of future developments on the hardware sector, it seems important to distinguish
between “optimization–capable” heuristics, where there is no principal obstacle to get closer
and closer to the optimal solution, provided that more computer power is invested, and
“non–optimizing” heuristics for which there are problem instances where the produced so-
lution quality may always be at a certain distance from the optimum, no matter how much
computation effort be spent and how powerful the hardware may be. For anybody using
or developing ant–based algorithms, it might be reassuring to know that Graph–based Ant
System belongs to the first class of heuristics. A thorough theoretical comparison of Graph–
based Ant System with other heuristics of this first class is a task for the future.

20

5 Conclusion

We have developed a formal framework for extending Ant System ([8, 4]) to Graph–based
Ant System, a metaheuristic which can treat arbitrary static combinatorial optimization
problems. Graph–based Ant System is closely related to the ACO metaheuristic recently
developed by Dorigo and Di Caro, but it focuses more on classical features of ant–based
optimization systems, and is somewhat more restricted with respect to implementation al-
ternatives.

For Graph–based Ant System, we have been able to derive a convergence result. Com-
pared to the convergence result for another well–known optimization metaheuristic, Simu-
lated Annealing (see [1], ch. 3), our Theorem 4.1 is weaker: we cannot demonstrate conver-
gence (to the optimal solution) in distribution or with probability one, but only convergence
with a probability that can be made arbitrarily close to one by a suitable choice of the
parameters of the heuristic. In particular, it has been shown that there are two possible
alternatives for increasing the convergence probability: increasing the number of agents, or
decreasing the evaporation factor.

As most theoretical convergence results for heuristics, our Theorem 4.1 has to be inter-
preted cautiously. From the fact that a large number of agents and/or a small evaporation
factor yield high probabilities of convergence to the optimum, it does not follow that an
implementation of Graph–based Ant System is the better, the more agents are used and
the smaller the evaporation factor is. The price for a (theoretically) favorable convergence
behavior can be an explosion of the computation time: If, for example, a very large number
of agents is simulated on a single–processor system, then it may take an infeasible large com-
putation time before Graph–based Ant System turns from a merely “explorative” phase to
an “optimizing” phase. So it may be better to reduce the number of agents, even if thereby
also the chance of finding the global optimum is reduced. A very similar problem is known
from SA applications, where the “theoretical” cooling schedule (implying convergence) must
be modified to a much faster cooling schedule in order to get the procedure out of the first
(random–search–like) phase with high temperature parameter (see [1]).

As to ant–based optimization in general, much remains to be done, both experimentally
and theoretically. Up to now, only a small fraction of problem types seems to have been
attacked by such approaches. In terms of the framework developed in this article, research
should be done in designing suitable construction graphs for the diverse types of applications,
and in evaluating them experimentally. For most problems, there are alternative ways of
encoding feasible solutions by walks in corresponding construction graphs, and it should be
found out which are the best. Also different ways of updating pheromone values (cf. the “eli-
tist” scheme suggested by condition (d) at the beginning of Section 4) should be investigated
in much more detail.

From a theoretical point of view, our results in Section 4 leave some interesting questions
open. Which of our conditions (a) – (d) can be relaxed or dropped? Particularly challenging
seems the question whether condition (b) can be dropped. Besides its theoretical interest,
an answer to this question is also of practical value: if the answer whether condition (b)
can be omitted should be “no”, then one could conclude that redundancy in encoding fea-
sible solutions should be avoided whenever possible, which would exclude certain types of

21

construction graphs where several walks correspond to the same solution. As mentioned in
Section 4, however, it seems at the moment that condition (b) can be completely dropped.
Condition (d) should stimulate the investigation of the convergence behavior of mixtures
between elitist and non–elitist pheromone update strategies. Moreover, also rank–based
update strategies (see [2]) should be investigated.

Another interesting theoretical question concerns the speed of convergence. From the
proof of our main theorem, some information about this topic could be derived, but the
question deserves a much closer look. In total, it would be desirable to develop the theory
of ant–based systems to such an extent as it has already been achieved for certain other
metaheuristics, Simulated Annealing being an excellent example.

Acknowledgment. The author is indebted to B. Bullnheimer and C. Strauss for having
drawn his attention to Ant System, to B. Bullnheimer for helpful remarks on a preliminary
version, and to R. F. Hartl for a discussion on the conditions used in the convergence result.
Furthermore, he wants to thank the anonymous referees for their profound comments which
led to a considerable improvement of the article.

References

[1] E. Aarts and J. Korst, Simulated Annealing and Boltzmann Machines (Wiley, 1989).

[2] B. Bullnheimer, R.F. Hartl, and C. Strauss, A new rank–based version of the Ant
System: A computational study, Central European Journal for Operations Research
and Economics 7 (1999) 25–38.

[3] B. Bullnheimer, G. Kotsis, and C. Strauss, Parallelization Strategies for the Ant System,
in: R. Leone, A. Murti, P. M. Pardalos, G. Toralo, eds., High Performance Algorithms
and Software in Nonlinear Optimization (Kluwer Academic Publishers, Dordrecht, 1998)
87–100.

[4] M. Dorigo, Optimization, Learning and Natural Algorithms, PhD Thesis, Dept. of Elec-
tronics, Politecnico di Milano, Italy, 1992.

[5] M. Dorigo, G. Di Caro, and L.M. Gambardella, Ant algorithms for distributed discrete
optimization, Artificial Life 5(2) (1999) 137–172.

[6] M. Dorigo and G. Di Caro, The ant colony optimization meta-heuristic, in: D. Corne,
M. Dorigo, and F. Glover, eds., New Ideas in Optimization (McGraw-Hill, London, UK,
1999) 11–32.

[7] M. Dorigo and L.M. Gambardella, Ant Colony System: A cooperative learning approach
to the traveling salesman problem, IEEE Trans. on Evolutionary Computation 1 (1997)
53–66.

22

[8] M. Dorigo, V. Maniezzo, and A. Colorni, The Ant System: An Autocatalytic Opti-
mization Process, Technical Report 91–016, Dept. of Electronics, Politecnico di Milano,
Italy, 1991.

[9] M. Dorigo, V. Maniezzo, and A. Colorni, The Ant System: Optimization by a colony of
cooperating agents, IEEE Trans. on Systems, Man, and Cybernetics 26 (1996) 29–41.

[10] Th.A. Feo and M.G.C. Resende, Greedy randomized adaptive search procedures, J. of
Global Optimization 6 (1995) 109–133.

[11] R.G. Gallager, Discrete Stochastic Processes (Kluwer, 1996).

[12] F. Glover, Tabu Search, Part I, ORSA J. on Computing 1 (1989) 190–206.

[13] L.M. Gambardella and M. Dorigo, Ant-Q: A Reinforcement Learning approach to the
traveling salesman problem, in: Proc. ML-95, Twelfth Intern. Conf. on Machine Learn-
ing (Morgan Kaufman, Palo Alto, CA, 1995) 252–260.

[14] L.M. Gambardella and M. Dorigo, Solving symmetric and asymmetric TSPs by ant
colonies, in: ICEC96, Proc. of the IEEE Conference on Evolutionary Computing (IEEE
Press, 1996) 622–627.

[15] W.J. Gutjahr, A generalized convergence result for the Graph–Based Ant System meta-
heuristic, Technical Report 99-09, Dept. of Statistics, O.R. and Computer Sci., Univer-
sity of Vienna, 1999.

[16] J.H. Holland, Adaption in Natural and Artificial Systems (University of Michigan Press,
1975).

[17] V. Maniezzo, A. Colorni, and M. Dorigo, The Ant System applied to the quadratic
assignment problem, Technical Report IRIDIA/94–28, Université Libre de Bruxelles,
Belgium, 1994.

[18] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs (Springer,
1992).

[19] Ch.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and
Complexity (Prentice–Hall, 1982).

Correspondence:
Walter J. Gutjahr
Dept. of Statistics, O.R., and Computer Sci.
Universitaetsstrasse 5/9
A-1010 Wien, Austria
E-mail: walter.gutjahr@univie.ac.at

23

